Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Катодную защиту трубопроводов от коррозии разработали еще в девятнадцатом столетии. Эта технология впервые были использована в кораблестроительной отрасли — анодными протекторами обшивали корпус плавучего судна, что минимизировало коррозийные процессы медного сплава. Чуть позже эту технологию начали активно применять и в других сферах. Кроме того, катодная методика на настоящий момент считается самой эффективной технологией антикоррозионной защиты.

Существует два типа катодной защиты металлических сплавов:

  • Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризациюпервый вариант предполагает то, что к обрабатываемой конструкции подключается источник электротока, то есть сама металлическая деталь становится катодом, а анодами выступают внешние электроды;
  • второй способ — гальваника — обрабатываемая заготовка соприкасается с проекторной пластинкой из металлического сплава, который обладает электроотрицательным потенциалом. При этой технологии в качестве анода выступают оба металла. С течением времена проекторная пластика подвергается разрушению.

Самым распространенным сегодня считается первый вариант, так как он является более быстрым и простым. С помощью это технологии можно справиться с разными типами коррозии:

  • межкристальная;
  • потрескивание латуни из-за чрезмерного напряжения;
  • коррозия, обусловленная влиянием блуждающих электротоков;
  • питтинговая коррозия и т. д.

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Гальваническая технология очень популярна на территории США, в нашей же стране она почти не применяется, так как технология устройства трубопроводов в РФ не подразумевает обработку особой изоляцией, которая необходима для гальванической защиты.

Без такого покрытия повышается коррозия стали под влиянием грунтовых вод, что крайне актуально для осени и весны. В зимний период после оледенения воды процесс коррозии значительно затормаживается.

Описание технологии

Катодная защита от коррозии производится с помощью постоянного электротока, подаваемого на обрабатываемое изделие, и делает потенциал заготовки отрицательным. Для этой цели зачастую применяются выпрямители.

Объект, который подсоединен к источнику электротока, считается «минусом», то есть катодом, а подведенное заземление является анодом, то есть «плюсом». Главное условие — наличие хорошей электропроводной среды. Для подземных труб ею является грунт.

При реализации этой технологии между почвой (электропроводной средой) и обрабатываемым объектом должна обязательно поддерживаться разница потенциалов электротока. Величину этого показателя можно определить с применением вольтметра высокоомного типа.

Особенности эффективной работы

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Катодная методика в этой ситуации позволяет минимизировать процесс растворения и окисления металлического сплава посредством изменения исходного коррозийного потенциала.

Результаты практических испытаний говорят о том, что потенциал поляризации металлических сплавов с помощью катодной методики замедляет коррозию.

Для того чтобы добиться эффективной защиты, нужно с помощью постоянного электротока уменьшить катодный потенциал материала, который использовался для создания трубопровода. В этой ситуации быстрота корродирования металла не будет превышать десяти микрометров в год.

Кроме того, катодная защита — самое лучшее решение для защиты трубопровода под землей от влияния блуждающих электротоков. Блуждающие токи — это электрозаряд, проникающий в почву при работе громоотвода, движения электропоездов и т. д.

  • Для обеспечения антикоррозийной защиты могут применяться линии электропередач или портативные генераторы, функционирующие на дизельном топливе или газу.
  • Для целей обеспечения защиты используются специальные станции. Это оборудование включает в себя несколько узлов:
  • источник электротока;
  • анод (заземление);
  • пункт измерения, контроля и управления;
  • соединительные провода и шнуры.

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

В нашей стране особую популярность имеет установка Минерва-3000. Показателей мощности этой СКЗ достаточно для того, чтобы защитить от коррозии примерно 40 километров трубопровода под землей.

К достоинствам установки следует отнести:

  • Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризациювысокие показатели мощности;
  • опция восстановления после произведенной перезагрузки;
  • герметичность соединений и узлов;
  • наличие цифровых систем контроля и переключения режима;
  • возможность удаленного управления.

Дистанционный контроль за оборудованием осуществляется посредством модулей GPRS, которые встроены в конструкцию.

Источник:

Защита трубопровода от коррозии

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Трубопроводные магистрали сегодня являются наиболее распространенным средством для осуществления доставки носителей энергии. К сожалению, у них есть существенный недостаток – они подвержены образованию ржавчины. Чтобы избежать появления коррозии на магистральных трубопроводах, выполняют катодную защиту. В чем же заключается ее принцип действия?

В наши дни существует много способов защиты водопроводов от коррозии. Суть их проста: металл, из которого изготовлены трубы, вступает в реакцию с определенными растворами и веществами. Результатом процесса становится образование небольшой защитной пенки.

Специалистами выделяются следующие методы защиты трубопроводов от коррозии:

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты. 

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Катодная защита

Метод, достаточно часто используемый для защиты металлоконструкций от коррозии. Применяется в тех случаях, когда металл не имеет склонности к пассивации.

Суть метода проста: к изделию подается внешний электроток от отрицательного полюса, который обеспечивает поляризацию катодных участков коррозионных составляющих и поднимает значение потенциала до анодных.

После прикрепления положительного полюса источника тока к аноду коррозия защищаемого изделия становится почти нулевой.

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Анод требует периодической замены, так как со временем происходит его разрушение. 

  • Способы катодной защиты: поляризация от внешнего источника электротока, торможение развития катодного процесса, связь с металлом, имеющим более электроотрицательный потенциал свободной коррозии в определенной среде (протекторная защита).
  • С помощью поляризации от внешнего источника электротока защищают конструкции, находящиеся в почве и в воде, цинк, олово, алюминий и его сплавы, титан, медь и ее сплавы, свинец, высокохромистые, углеродистые, низколегированные и высоколегированные стали.
  • Роль внешнего источника электротока выполняют станции катодной защиты. Их главные составляющие — выпрямитель, токоподвод к защищаемому объекту, анодные заземлители, электрод сравнения и анодный кабель.
  • Катодная защита может быть использована в качестве самостоятельного или дополнительного способа коррозионной защиты.

Основной показатель результативности метода – защитный потенциал. Защитным называют тот потенциал, при котором быстрота коррозионного процесса металлического изделия становится минимальной. 

Однако катодная защита обладает определенными недостатками. Один из них – опасность перезащиты. Такой эффект может наблюдаться в случае большого смещения потенциала защищаемого изделия в отрицательную сторону. Вследствие этого разрушаются защитные оболочки, начинается водородное охрупчивание металла, коррозионное растрескивание. 

Протекторная защита

Вид катодной защиты, в процессе которого к защищаемому объекту подсоединяют металл с более высоким электроотрицательным потенциалом. При этом разрушается не металлоконструкция, а протектор. Через определенный промежуток времени протектор корродирует и его потребуется заменить на новый. 

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

  • Эффект от протекторной защиты будет заметен только в том случае, если переходное сопротивление между протектором и окружающей средой незначительно. 
  • У каждого протектора есть свой радиус защитного действия – предельно возможное расстояние, на которое можно удалить протектор без утраты защитного эффекта. Протекторную защиту применяют, когда ток к объекту подвести трудно, дорого или просто невозможно.
  • С помощью протекторов защищают объекты, находящиеся в нейтральных средах (море, реке, воздухе, почве и т.д.).
  • Материалом для изготовления протекторов служит магний, цинк, железо, алюминий. Металлы в чистом виде не смогут стать эффективной защитой для конструкций, поэтому, изготавливая протекторы, их дополнительно легируют. 

Для изготовления железных протекторов используют углеродистые стали или чистое железо.

Читайте также:  Санация трубопроводов канализации это

Анодная защита

Используется для титановых конструкций, объектов из низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Метод применяют в хорошо электропроводной коррозионной среде. 

При анодной защите происходит сдвиг потенциала защищаемого металла в более положительную сторону. Смещение будет длиться до тех пор, пока не достигнется инертное устойчивое состояние системы. К преимуществам анодной электрохимической защиты можно отнести не только существенное торможение скорости коррозии, но и то, что продукты коррозии не оказываются в производимом продукте и среде. 

  • Существует несколько способов реализации анодной защиты: можно сдвинуть потенциал в положительную сторону с помощью источника внешнего электротока или ввести в коррозионную среду окислители, которые способны повысить эффективность катодного процесса на металлической поверхности.    
  • Анодная защита с применением окислителей по защитному механизму имеет много общего с анодной поляризацией. 
  • При использовании пассивирующих ингибиторов с окисляющими характеристиками (бихроматов, нитратов и т.д.), защищаемая металлическая поверхность под воздействием возникшего тока становится пассивной. Однако эти вещества способны сильно загрязнять технологическую среду. 
  • Если ввести в сплав добавки, реакция восстановления деполяризаторов, которая происходит на катоде, пройдет не с таким большим перенапряжением, как на защищаемом металле. 
  • При прохождении электротока через защищаемую конструкцию потенциал сдвигается в положительную сторону. 
  • В состав установки для анодной электрохимической защиты входит источник внешнего электротока, электрод сравнения, катод и защищаемая конструкция. 

Для эффективности метода в той или иной среде используют легкопассивируемые металлы и сплавы. Кроме этого требуется высокое качество выполнения соединительных элементов и постоянное нахождение электрода сравнения и катода в растворе. 

  • Подход к проектированию схемы расположения катодов должен быть индивидуальным для каждого случая. 
  • Электрохимическую анодную защиту нержавеющих сталей используют для хранилищ серной кислоты, аммиачных растворов, минеральных удобрений, различных сборников, цистерн, мерников. 
  • Анодную защиту используют, чтобы предотвратить коррозию ванн химического никелирования и теплообменных установок в изготовлении искусственного волокна и серной кислоты. 

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление. 

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж — это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света. 
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод. 
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении — от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу. 
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный — к рельсам электрифицированного транспорта, а не к анодному заземлению. 
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Источник:

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

Электрохимическая защита трубопроводов от коррозии — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).


Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы.

Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой.

В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д.

протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений — это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности.

На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты. Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины.

Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве.

Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод — почвенный электролит — трубопровод — катодный кабель — источник постоянного тока — анодный кабель.

В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением. Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга — контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами  осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж — созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

Читайте также:  Скважина с трубой в разрезе

P.S. Обзор технических решений по ЭХЗ других металлических конструкций и сооружений можно прочитать здесь.

Хотите узнать больше о коррозии металлических конструкций и методах противокоррозионной защиты?

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Электрохимическая защита технологических трубопроводов

Главная / Проектирование трубопроводных сетей / Оборудование трубопроводов / Электрохимическая защита технологических трубопроводов

При укладке в траншею изолированного трубопровода и его последующей засыпке изоляционное покрытие может быть повреждено, а в процессе эксплуатации трубопровода оно постепенно стареет (теряет свои диэлектрические свойства, водоустойчивость, адгезию). Поэтому при всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты (ЭХЗ) независимо от коррозионной активности грунта.

К средствам ЭХЗ относятся катодная, протекторная и электродренажная защиты.

Защита от почвенной коррозии осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Катодная защита

Принципиальная схема катодной защиты показана на рисунке.

Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток от вдольтрассовой ЛЭП 1, поступающий через трансформаторный пункт 2, преобразуется в постоянный.

Отрицательным полюсом источник с помощью соединительного провода 4 подключен к защищаемому трубопроводу 6, а положительным — к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.

Принципиальная схема катодной защиты

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

1 — ЛЭП; 2 — трансформаторный пункт; 3 — станция катодной защиты; 4 — соединительный провод; 5 — анодное заземление; 6 — трубопровод

Принцип действия катодной защиты следующий. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении «анодное заземление — источник тока— защищаемое сооружение».

Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т.е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся в глубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т.е.

создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

  • Подземные коммуникации нефтебаз защищают катодными установками с различными типами анодных заземлений. Необходимая сила защитного тока катодной установки определяется по формуле
  • Jдр=j3·F3·K0
  • где j3 — необходимая величина защитной плотности тока; F3 — суммарная поверхность контакта подземных сооружений с грунтом; К0 — коэффициент оголенности коммуникаций, величина которого определяется в зависимости от переходного сопротивления изоляционного покрытия Rnep и удельного электросопротивления грунта рг по графику, приведенному на рисунке ниже.
  • Необходимая величина защитной плотности тока выбирается в зависимости от характеристики грунтов площадки нефтебазы в соответствии с таблицей ниже.

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода: трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь, опущены в почвенный электролит и соединены проводом 3.

Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3.

Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Зависимость коэффициентов оголенности подземных трубопроводов от переходного сопротивления изоляционного покрытия для грунтов удельным сопротивлением, Ом-м

Система эхз подземных технологических трубопроводов кс обеспечивает катодную поляризацию

1 — 100; 2 — 50; 3 — 30; 4 — 10; 5 — 5

Зависимость защитной плотности тока от характеристики грунтов

Тип грунта рп Омм А, А/м2
Влажный глинистый грунт:
— pH >8 15 0,033
pH = 6-8 15 0,160
— с примесью песка 15 0,187
Влажный торф (pH

Контроль состояния изоляции трубопровода методом катодной поляризации — Эхз

  • Контроль состояния изоляции методом катодной поляризации проводится с целью проверки соответствия требованиям ГОСТ Р 51164-98 качества изоляции построенного, реконструируемого или капитально отремонтированного участка нефтепровода, а также определения состояния изоляции на отдельных участках эксплуатируемых нефтепроводов.
  • Контроль качества изоляционного покрытия участков магистральных нефтепроводов методом катодной поляризации должен осуществляться на стадии завершения строительства, реконструкции или капитального ремонта (в соответствии с проектной документацией) перед врезкой в действующий нефтепровод.
  • Контроль качества изоляции трубопроводов методом катодной поляризации производится на подземных нефтепроводах, находящихся в грунте, глубина промерзания которого в период контроля изоляции не превышает 0,5 метра.

Сопротивление изоляции на законченных строительством, реконструированных или капитально отремонтированных участках МН должно соответствовать требованиям ГОСТ Р 51164-98 (таблица 11.1). 

Таблица 11.1 — Сопротивление изоляции на законченных строительством участках трубопровода 

Контроль состояния изоляционного покрытия законченного строительством, реконструкцией или капитальным ремонтом участка трубопровода методом катодной поляризации осуществляют не раньше, чем произошло естественное уплотнение грунта после засыпки траншеи. Это время должно быть не менее двух недель.

Состояние изоляционного покрытия оценивается по сопротивлению изоляционного покрытия, которое определяется (рассчитывается) по силе тока поляризации и смещению разности потенциалов труба-земля в конце контролируемого участка. 

Принципиальная схема контроля состояния изоляционного покрытия участка трубопровода приведена на рисунке 11.1.

  1. Рисунок 11.1 – Принципиальная схема контроля состояния изоляции
  2. методом катодной поляризации:
  3. 1-регулирующий резистор; 2-миллиамперметр; 3-источник постоянного тока;
  4. 4-соединительные провода; 5-временное заземление; 6-испытуемый участок нефтепровода; 
  5. 7-медносульфатный электрод сравнения; 8-вольтметр; 9-неизолированный конец трубы
  6. Смещение разности потенциалов труба-земля δU должно быть не менее 0,7 В для участков длиной менее 4 км и не менее 0,4 В для участков более 4 км. 
  7. Это смещение вычисляют по формуле: 
  8.             δU = U(I)тзи – U(0)тзе, (11.1)
  9. где U(I)тзи – измеренная разность потенциалов труба-земля (после включения катодной поляризации и трехчасовой поляризации);
  10.             U(0)тзе – естественная разность потенциалов труба-земля (измеренная до включения катодной поляризации).

Если контролируемый участок длиной более 4 км расположен в зоне действия блуждающих токов, то измеренное смещение разности потенциалов должно быть не менее 0,5 В. Для короткого участка (от 200 м до 4 км), расположенного в зоне действия блуждающих токов, измеренное смешение разности потенциалов труба-земля должно быть не менее 0,8 В. 

Ток контроля определяют для длины всего испытываемого участка за вычетом протяженности суммарной длины воздушных переходов на этом участке.

В случае получения положительных результатов испытания участка трубопровода методом катодной поляризации, проверенный участок допускается целиком или частично подвергнуть вторичному контролю в составе большего участка, в который он вошел. В случае, если этот больший участок показывает неудовлетворительное качество изоляции, то поиск дефектов следует производить только на тех частях участка, которые не подвергали проверке раньше.

Контроль качества изоляционного покрытия трубопроводов может быть выполнен специализированной подрядной организацией.

На контролируемом участке должны быть локализованы и отремонтированы сквозные дефекты изоляционного покрытия. 

Контролируемый участок не должен иметь электрических и технологических перемычек с другими сооружениями, в том числе с собственными металлическими кожухами на переходах через автомобильные и железные дороги. Не допускается также контакт неизолированных концов контролируемого участка с грунтом, строительными конструкциями, в том числе конструкциями на основе бетона.

На всем протяжении контролируемого участка трубопровода в соответствии с проектом должны быть установлены контрольно-измерительные пункты (КИП). Если КИП не установлены, то такой участок считается не подготовленным к испытаниям.

  • Подключение источника поляризующего тока осуществляют только после предварительного измерения естественного (потенциала потенциалов свободной коррозии) на конце контролируемого участка.
  • В качестве источника поляризующего тока должны быть использованы либо аккумуляторная батарея напряжением 12 или 24 В, либо стабилизированный источник питания постоянного тока.
  • В цепь любого источника тока должен быть включен регулировочный резистор для плавной регулировки поляризующего тока и снижения зависимости поляризующего тока от времени поляризации. 
Читайте также:  Прайс лист по запорной арматуре

Измерение тока должно производиться сертифицированным, прошедшим поверку амперметром (миллиамперметром, микроамперметром — соответственно расчетному току поляризации) с классом точности не ниже 1,0. Диапазон измерений прибора должен быть выбран таким, чтобы отсчет величины тока поляризации производился с наименьшей погрешностью.

Измерение естественного потенциала и разности потенциалов труба-земля при катодной поляризации трубопровода должно производиться вольтметром относительно медно-сульфатного электрода сравнения. Входное сопротивление вольтметра должно быть не менее    10 МОм.

Электрод сравнения должен располагаться над трубопроводом с отклонением от вертикали, проходящей через ось трубопровода не более, чем на ± 0,2 м. Грунт в месте установки электрода при необходимости увлажняют.

Если электрод сравнения приходится размещать в грунтах с удельным электрическим сопротивлением более 100 Ом·м, то для увлажнения рекомендуется применять подсоленную воду (5-ти процентный раствор хлористого натрия в любой пресной природной воде).

  1. Если верхний слой почвы находится в мерзлом состоянии, то место установки электрода сравнения увлажняют тем же солевым раствором.
  2. При расположении контролируемого участка в зоне действия блуждающих токов для измерения разности потенциалов при катодной поляризации должны применяться
  3. самопишущие или регистрирующие приборы с внутренним сопротивлением не менее 10 МОм.
  4. Источник тока должен быть подсоединен «минусом» к трубопроводу, а «плюсом» — к временному заземлению.
  5. Временное заземление должно использоваться исключительно в целях катодной поляризации участка нефтепровода.

Для оборудования временного заземления используют стержневые или винтовые электроды. Переходное сопротивление временного заземления должно быть не более величины, приведенной в таблице 11.2.

  • Таблица 11.2 – Сопротивление растеканию временного заземления, Ом
  • При помощи регулирования тока источника поляризации (изменением сопротивления последовательно включенного резистора) устанавливают требуемый ток в цепи и регулируют его величину в соответствии
  • Временное заземление располагают в местах с возможно меньшим удельным электрическим сопротивлением грунта на расстоянии от 100 до 400 м от трубопровода.

Указанное расстояние зависит от длины контролируемого участка и должно соответствовать таблице 11.3.

  1. Таблица 11.3 – Расстояние до места расположения временного заземления
  2. Если испытываемый участок трубопровода находится под катодной (в том числе временной) защитой (гальваническая, с помощью перемычек или другим способом), то эта защита должна быть отключена не менее чем за трое суток до измерения естественной разности потенциалов труба-земля, а перемычки разомкнуты.
  3. Испытания проводят в следующей последовательности:

а) Измеряют естественную разность потенциалов труба-земля в конце участка. При измерениях источник постоянного тока должен быть выключен.

б) Включают источник постоянного тока, устанавливают требуемую силу тока (плотность тока контроля (мА/км) состояния изоляции в зависимости от длины контролируемого участка и требуемого значения сопротивления изоляции определяют по таблице А1 приложения А          РД-29.035.00-КТН-080-10).

в) Измеряют разность потенциалов труба-земля в конце контролируемого участка и определяют смещение потенциала. Если это смещение меньше указанного, то ток контроля увеличивают до получения требуемого смещения.

г) Этот ток поддерживают постоянным в течение всего периода испытаний при помощи регулировочного резистора, либо путем увеличения сопротивления растеканию временного анодного заземления, либо изменением напряжения источника питания, либо совокупностью любых вышеперечисленных способов.

д) По истечении не менее 3 ч поляризации измеряют разность потенциалов труба-земля в конце участка, проводят расчеты и заполняют акт оценки состояния изоляции трубопровода (Приложение И).

Трубопроводы магистральные и промысловыедля нефти и газа
Производство работ по противокоррозионной защите
средствами электрохимзащитыи контроль выполнения работ

Agnigor, 2019

СВОД ПРАВИЛ

СП 424.1325800.2019

  • Main and field oil and gas pipelines
    Works for corrosion protection by the means of cathodic protection
  • and their implementation control

Дата введения 01.08.2019

  1. Содержание
  2. Предисловие
  3. Введение
  4. 1. Область применения
  5. 2. Нормативные ссылки
  6. 3. Термины и определения
  7. 4. Сокращения
  8. 5. Монтаж систем электрохимической защиты

5.1. Монтаж установок катодной защиты

5.2. Монтаж установок
электродренажной защиты

5.3. Монтаж установок протекторной
защиты

5.4. Монтаж системы мониторинга и
дистанционного управления

5.5. Особенности устройства систем
электрохимической защиты на промысловых трубопроводах

5.6. Требования к контролю
выполнения работ

5.7. Требования к безопасному
выполнению работ

Библиография

Текст

Предисловие

Сведения о своде правил

1. Исполнитель — Акционерное общество «Всесоюзный
научно-исследовательский институт по строительству, эксплуатации трубопроводов
и объектов ТЭК — Инжиниринговая нефтегазовая компания» (АО ВНИИСТ).

2. Внесен Техническим комитетом по стандартизации ТК 465 «Строительство».

3. Подготовлен к утверждению Департаментом градостроительной
деятельности и архитектуры Министерства строительства и жилищно-коммунального
хозяйства Российской Федерации (Минстрой России).

4. Утвержден приказом Министерства строительства и
жилищно-коммунального хозяйства Российской Федерации от 31 января 2019 года
№69/пр и введен в действие с 1 августа 2019г.

5. Зарегистрирован Федеральным агентством по техническому
регулированию и метрологии (Росстандарт).

6. Введен впервые.

В случае пересмотра (замены) или отмены настоящего свода
правил соответствующее уведомление будет опубликовано в установленном порядке.
Соответствующая информация, уведомление и тексты размещаются также в
информационной системе общего пользования -на официальном сайте разработчика
(Минстрой России) в сети Интернет.

Введение

Настоящий свод правил разработан с учетом требований Федеральных
законов от 29 июня 2015г. №162-ФЗ «О
стандартизации в Российской Федерации», от 29 декабря 2004г.

№190-ФЗ
«Градостроительный кодекс Российской Федерации», от 30 декабря 2009г. №384-ФЗ «Технический
регламент о безопасности зданий и сооружений», от 21 июля 1997г.

№116-ФЗ «О промышленной
безопасности опасных производственных объектов».

Цель разработки свода правил — обеспечение безопасности и
эффективности работ по обустройству магистральных и промысловых трубопроводов
системами электрохимической защиты от коррозии.

Настоящий свод правил разработан авторским коллективом АО ВНИИСТ
(д-р техн. наук В.В.Притула, канд. техн. наук В.Б.Ковалевский, канд. техн. наук
М.А.Башаев, канд. техн. наук А.О.Иванцов, Е.А.Фомина, О.Н.Головкина,
А.Н.Бутовка).

1. Область применения

1.1 Настоящий свод правил устанавливает правила производства и
контроля выполнения строительно-монтажных и пусконаладочных работ по
электрохимической защите от коррозии магистральных и промысловых трубопроводов.

1.2 Настоящий свод правил распространяется на линейную часть
стальных магистральных и промысловых трубопроводов, транспортирующих нефть,
газ, конденсат, а также продукты их переработки.

2. Нормативные ссылки

В настоящем своде правил приведены ссылки на следующие
нормативные документы:

— ГОСТ 9.602-2016 Единая система защиты от коррозии и старения.
Сооружения подземные. Общие требования к защите от коррозии;

— ГОСТ 5272-68 Коррозия металлов. Термины;

— ГОСТ 23706-93 (МЭК 51-6-84) Приборы аналоговые показывающие
электроизмерительные прямого действия и вспомогательные части к ним. Часть 6.
Особые требования к омметрам (приборам для измерения полного сопротивления) и
приборам для измерения активной проводимости;

— ГОСТ 24297-2013 Верификация закупленной продукции. Организация
проведения и методы контроля;

— ГОСТ Р 12.3.048-2002 Система стандартов безопасности труда.
Строительство. Производство земляных работ способом гидромеханизации.
Требования безопасности;

  • — ГОСТ Р 50838-2009 (ИСО 4437:2007) Трубы из полиэтилена для
    газопроводов. Технические условия;
  • — ГОСТ Р 51164-98 Трубопроводы
    стальные магистральные. Общие требования к защите от коррозии;
  • — ГОСТ Р 57190-2016 Заземлители и заземляющие устройства
    различного назначения. Термины и определения;

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *